Tym razem chcę poruszyć temat testów obciążeniowych serwerowni / centrum danych, który ma na celu zbadanie poprawności zaprojektowanych i wykonanych instalacji klimatyzacji i zasilania serwerowni oraz prawidłowego funkcjonowania tych systemów dla docelowej, maksymalnej wartości obciążenia energetycznego.

Obciążnice w szafach serwerowych
Obciążnice w szafach serwerowych

W trakcie projektowania centrum danych i serwerowni dobierane są odpowiednie rozwiązania z zakresu klimatyzacji i zasilania, które często wynikają z solidnych obliczeń i doświadczenia projektanta bądź w wyniku sprawnych działań handlowca reprezentującego konkretnego producenta. W projekcie wszystko może wyglądać dobrze, ale czy tak będzie w rzeczywistości? Jest to już zagadka, która zazwyczaj rozwiązuje się zbyt późno - kiedy już system IT został wdrożony i każda minuta przestoju jest dramatyczna. Często jest jednak tak, że do maksymalnej, projektowanej mocy elektrycznej serwerownia zostanie obciążona dopiero po długim czasie, kiedy to już trudno będzie rościć pretensje do projektanta lub firmy wykonawczej, która również mogła przyczynić się do niewłaściwego rezultatu wykonując coś nie tak jak zostało to zaprojektowane.

Inną kwestią jest odpowiednia konfiguracja systemów chłodzenia i zasilania w tym zasilania gwarantowanego i rezerwowanego. Co z tego, że nasz system zasilaczy UPS wraz z dużą ilością baterii podtrzyma urządzenia IT nawet na 15 minut, jeśli klimatyzacja w tym czasie nie będzie działała, lub jeśli uruchomi się zbyt późno, kiedy zbyt wysoka temperatura spowoduje samoczynne wyłączanie się sprzętu IT. Co jeśli zaplanowano, że klimatyzatory tylko na chwilę się wyłączą lub będą podtrzymane zasilaniem gwarantowanym, jeśli nie będzie to zapewnione dla agregatów wody lodowej, które po zaniku napięcia potrzebują kilku minut na wznowienie działania... Tego typu pytań będzie znacznie więcej zależnie od konkretnego przypadku.

Aby uniknąć takich sytuacji należałoby wykonać testy obciążeniowe centrum danych przed odebraniem prac od wykonawcy. Tylko jak takie testy wykonać nie mając jeszcze zapełnionej serwerowni urządzeniami IT? Można to zlecić odpowiedniej firmie, która się takimi rzeczami zajmuje i posiada odpowiednią ilość obciążnic, które zasymilują działanie i wytwarzanie ciepła serwerów dla projektowanej mocy. Nie mam tutaj na myśli pojedynczej, dużej obciążnicy, która będzie stała na zewnątrz i sprawdzi poprawność jedynie instalacji zasilania, ale takich obciążnic, które zostaną zamontowane w szafach rack odpowiednio i równomiernie dla całej serwerowni.

Badanie stanu baterii UPS-a w czasie zaniku zasilania z sieci
Badanie stanu baterii UPS-a w czasie zaniku zasilania z sieci i dużego obciążenia gwarantowanych odbiorów centrum danych

Takie urządzenia, przy kontrolowanym zaniku zasilania z sieci, pozwolą na bezpieczne zbadanie wydajności klimatyzacji oraz tego, czy została ona odpowiednio dobrana dla projektowanego obciążenia, czy utrzyma bezpieczną temperaturę do czasu przejęcia zasilania przez agregat prądotwórczy, czy agregaty prądotwórcze wystartują w planowanym czasie, czy w ogóle wystartują, czy zasilacze UPS poradzą sobie z taką awarią, czy baterie wytrzymają zadany czas podtrzymania na pełnym obciążeniu itd., itp.

Z mojego doświadczenia wynika, że coś może być nie tak zaprojektowane lub wykonane, albo po prostu urządzenie lub jego element miał wadę fabryczną. To coś, w produkcyjnym środowisku byłoby bardzo poważną usterkę i miałoby negatywny wpływ na wizerunek firmy, której system nagle przestałby działać na czas nieokreślony. Dużo łatwiej i praktycznie bezkosztowo dla inwestora (wady naprawia wykonawca) można problem wyeliminować zanim będzie za późno. Dlatego też polecam dołożyć do kosztorysu inwestorskiego taki element (testy obciążeniowe centrum danych)  i zlecić te prac bezpośrednio odpowiedniej firmie, która nie będzie związana z wykonawcą testowanego centrum danych, co zapewni rzetelność badania.

analizator jakości energii
Analizator jakości energii
obciążnice 3,5 kW
Obciążnice RACK-owe symulujące pracę serwerów w ich docelowych lokalizacjach w serwerowni
obciążnica
Obciążnica większej mocy

Budowa centrum przetwarzania danych, czyli z jakich części składa się data center? Wyjaśniam na kolejnym przykładzie. Kolejnym, ponieważ zagadnienie podziału data center poruszyłem przy okazji pisania mojej definicji centrum danych oraz analizy różnicy pomiędzy serwerownią a centrum danych.

Mimo, iż jestem zwolennikiem używania pojęcia "centrum danych" zamiast "centrum przetwarzania danych" (moje uzasadnienie), wygląda na to, że to drugie staje się bardziej popularne od pierwszego. Jestem przez to zmuszony do używania również nazwy "centrum przetwarzania danych", ponieważ w świecie Google'a mój blog może być pominięty dla osób szukających wiedzy pod taką frazą. Wspomnę tylko szybko, że w obu przypadkach piszę o tym samych, czyli o data center.

Tak więc tym razem przedstawiam podział funkcjonalny - budowę centrum przetwarzania danych na przykładzie modelu obiektu firmy SAP [1], bez powtarzania informacji, które można znaleźć w powyżej podlinkowanych treściach.

Jak zawsze, do omawiania budowy centrum przetwarzania danych najlepiej posługiwać się modelem komputerowym, ponieważ nie sposób wykonać zdjęcia przekroju istniejącego centrum danych. Poniżej przedstawiam obraz takiego modelu. Dodatkowo zostały na nim opisane poszczególne systemy i części funkcjonalne, które są umiejscowione w osobnych pomieszczeniach, co jest podstawową cechą profesjonalnego (modelowego) data center.

mainSAPDC

Głównym i najważniejszym pomieszczeniem centrum przetwarzania danych jest serwerownia (server room). To tutaj cały proces przetwarzania (i nie tylko) ma miejsce. Tutaj w odpowiednich warunkach klimatycznych i fizycznych pracują urządzenia IT. Poniżej zdjęcie wykonane w jednym z rzędów pomiędzy szafami IT (szafami "rack").

SAPDC01

Aby sprzęt IT w serwerowni mógł niezawodnie, ciągle i bezpiecznie pracować niezbędny jest odpowiednio zaprojektowany system zasilania. Oprócz zasilania z sieci elektroenergetycznej (na niezawodność której, nie mamy wpływu) niezbędne jest wyposażenie centrum przetwarzania danych w zasilacze bezprzerwowe UPS (zabezpieczające min. przed chwilowymi skokami i zanikami napięcia) oraz  generatory prądotwórcze, które w przypadku braku zasilania z sieci zapewnią źródło prądu (tutaj już jak najbardziej mamy wpływ na niezawodność i ciągłość zasilania). Poszczególne elementy systemu zasilania profesjonalnego centrum przetwarzania danych powinny być zlokalizowane w osobnych pomieszczeniach. Więcej o zasilaniu pisałem na stronie Zasilanie serwerowni w dziale Praktyka.

Poniżej zdjęcie zespołu generatorów prądotwórczych...

02

... oraz baterii zasilaczy UPS.

SAPDC03

Do schłodzenia dużej ilości ciepła generowanej przez urządzenia IT potrzebny jest wysoko wydajny system chłodzenia - standardowo oparty o klimatyzację precyzyjną. Z reguły jednostki wewnętrzne znajdują się w pomieszczeniu serwerowni (szczególnie w coraz częściej stosowanych klimatyzatorach rzędowych) lub w pomieszczeniu bezpośrednio przylegającym do serwerowni.

Poniżej zdjęcie wymienników ciepła zlokalizowanych na dachu omawianego centrum przetwarzania danych firmy SAP. Zgodnie z zamieszczonym na stronie źródłowej opisem, w przypadku wysokich temperatur zewnętrznych, wymienniki widoczne na zdjęciu są spryskiwane wodą w celu zwiększenia wydajności chłodzenia.

SAPDC05

Dalsza część systemu chłodzenia - zbiorniki buforowe (6 sztuk po 50 tysięcy litrów, razem 300 tysięcy litrów wody lodowej o temperaturze 4°C), które w przypadku awarii jednostek zewnętrznych (pokazanych na zdjęciu powyżej) zapewnią przez pewien czas źródło chłodu systemu. Zbiorniki takie również znajdują się w specjalnie do tego przeznaczonym pomieszczeniu.

SAPDC06

Nawet system gaszenia gazem w profesjonalnym centrum przetwarzania danych powinien mieć swoją, wydzieloną przestrzeń. W przypadku większego obiektu ilość środka gaśniczego, a co za tym idzie butli, będzie znacząca. Poniżej zdjęcie obrazujące tą kwestię.

SAPDC07

Pomieszczenie telekomunikacyjne jest miejscem gdzie świat zewnętrzny (Internet) łączy się za pomocą zaawansowanych routerów itp. ze światem wewnętrznym - urządzeniami i systemami informatycznymi obsługiwanymi przez centrum przetwarzania danych. Poniżej zdjęcie takiego pomieszczenia, w tym przypadku odpowiednio podzielonego zgodnie z potrzebami firmy SAP.

SAPDC08

Teren wokół centrum danych powinien być monitorowany, tak aby ochrona stale miała "oko" na to co się dzieje poza jego murami.

SAPDC10

Nad prawidłową pracą wszystkich elementów centrum przetwarzania danych stale musi pracować obsługa, która musi mieć do tego odpowiednie warunki. Stąd konieczność zapewnienia pomieszczenia, które tutaj nazwane zostało "stacją kontroli". W przeciwieństwie do serwerowni, klimat tutaj musi być przyjazny dla człowieka.

SAPDC09

Przedstawiona tutaj budowa (podział funkcjonalny) centrum przetwarzania danych jest jedną z możliwości jakie można zastosować. Jest on  bliski modelowi przedstawionemu w normie ANSI/TIA-942. Zasadność poszczególnych pomieszczeń i systemów oraz podziałów funkcjonalnych musi być każdorazowo analizowana na etapie projektowania data center pod kątem jego przeznaczenia (cloud computing, kolokacja itp.), wymaganego poziomu dostępności i niezawodności lub konkretnej klasy TIER.

Materiał zdjęciowy:

[1]. The SAP Data Center
      http://www.sapdatacenter.com/
      http://www.sapdatacenter.com/article/data_center_functionality/#!

Artykuł przedstawia przykład modelowania chłodzenia serwerowni, wykonanego za pomocą specjalistycznego oprogramowania typu CFD (ang. computational fluid dynamics), w celu przeanalizowania poprawności projektowanego systemu chłodzenia urządzeń w pomieszczeniu serwerowni. 

Omawiany przypadek modelowania wykonano na potrzeby związane z projektowaniem serwerowni znajdującej się centrum danych, którego użyłem jako przykładu w innym moim artykule, do przeczytania którego namawiam.

Dla przypomnienia, analizowane centrum danych powstało na potrzeby instytucji, dla której system informatyczny jest warunkiem istnienia i każda chwila przestoju niesie za sobą ogromne straty finansowe, dlatego całość musiała zostać tak zaprojektowana, aby można było wykonywać wszelkie prace związane z rozbudową systemu bez konieczności wyłączania elementów systemu. Ponadto ciągłość działania musiała być zapewniona nawet w przypadku długotrwałej awarii elektrowni energetycznej będącej źródłem prądu.

Klimatyzacja pomieszczenia serwerowni i UPS-owni

Dla zapewnienia odpowiednich warunków pracy sprzętu IT zastosowano w serwerowni systemy separacji chłodu i ciepła oraz klimatyzację rzędową jako bardziej wydajne i skuteczne oraz mniej stratne, eliminujące wiele dotychczas występujących problemów w serwerowniach rozwiązanie.

Przy projektowaniu systemu klimatyzacji serwerowni stale opierano się na symulacjach komputerowych obiegu powietrza (modelowanie chłodzenia serwerowni) przy użyciu programu typu CFD. Badania te pomogły ocenić efektywność systemu i poprawić wskazane błędy na etapie, kiedy jest to najłatwiejsze i najmniej kosztowe, czyli na etapie projektowania centrum danych. Poniżej przedstawiam kilka symulacji dla opisywanej serwerowni. Były one przeprowadzane dla pełnego obciążenia mocy przeznaczonej dla sprzętu IT.

Poniższy rysunek nr 1 przedstawia zrzut ekrany programu w trakcie wykonywania symulacji trójwymiarowej obiegu powietrza w omawianej serwerowni. Przedstawia on jak na uchwyconej wysokości nad podłogą techniczną rozmieszczone jest powietrze o zróżnicowanej temperaturze. Wyraźnie widać, że w strefie pomiędzy szafami jest chłodniej niż poza nimi. Po kliknięciu w rysunek widoczna będzie jego większa i bardziej czytelna wersja.

Rys.1. Symulacja pozioma, trójwymiarowa rozkładu temperatury powietrza w serwerowni.
Rys.1. Symulacja pozioma, trójwymiarowa rozkładu temperatury powietrza w serwerowni.

Rysunek nr 2 przedstawia fragment symulacji trójwymiarowej, pionowej, na której widać w innej perspektywie rozmieszczenie powietrza i jego temperatury.

Rys.2. Symulacja pionowa, trójwymiarowa rozkładu temperatury powietrza w serwerowni.
Rys.2. Symulacja pionowa, trójwymiarowa rozkładu temperatury powietrza w serwerowni.

Rysunek nr 3 przedstawia już nieco inny model symulacji, w którym to sprawdzane są potencjalne przebiegi prądów powietrza. Zostało to przedstawione przez oprogramowanie jako swoiste sznurki symbolizujące płynące powietrze. Również tutaj kolory oznaczają odpowiednie przedziały temperaturowe zgodne z legendą.

Rys.3. Symulacja trójwymiarowa dróg przepływu powietrza w serwerowni.
Rys.3. Symulacja trójwymiarowa dróg przepływu powietrza w serwerowni.

Poniższy rysunek nr 4 przedstawia to samo, co wcześniejszy z tym, że w widoku 2D.

Rys.4. Symulacja pozioma dróg przepływu powietrza w serwerowni.
Rys.4. Symulacja pozioma dróg przepływu powietrza w serwerowni.

I powtórzenie sytuacji z rysunku nr 1 w wersji dwu wymiarowej. Bardzo ładnie na nim widać, gdzie będą panowały wyższe temperatury oraz gdzie niższe. Można również dostrzec na rysunku strzałki, które wskazują obliczone kierunki przepływu powietrza.

Rys.5. Symulacja pozioma różnic temperatury serwerowni.
Rys.5. Symulacja pozioma różnic temperatury serwerowni.

Rysunki 1, 2 i 5 przedstawiają symulację obiegu powietrza systemu chłodzenia serwerowni zależną od wysokości badanej warstwy powietrza, natomiast rysunki 3 i 4 przedstawiają obieg powietrza zależny od czasu.

Przedstawione powyżej obrazy są jedynie fragmentami modelowania, które domyślnie jest realizowana przez program jako animacja, którą można zapisać w formacie filmu wideo i dowolnie analizować sytuację dla różnych wysokości nad podłogą, różnych czasów pracy sprzętu IT czy jego obciążenia.

Podsumowanie

Komputerowe modelowanie chłodzenia serwerowni (obiegu powietrza) jest jedynym sposobem na sprawdzenie poprawności zaprojektowanego rozwiązania, ponieważ odwzorowuje ono w miarę dokładnie rzeczywiste warunki. Nie jest to jednak rozwiązanie zalecane do badania łatwych przypadków, kiedy to doświadczenie projektanta jest wystarczającym pewnikiem poprawności zaprojektowanego systemu. Modelowanie takie jest dosyć kosztowne ze względu na konieczność posiadania odpowiedniej licencji programowej oraz umiejętności wykorzystania systemu.

 

Casablanca INT, właściciel omawianej serwerowni, jest jednym z największych providerów kolokacyjnych w Czechach i posiada kilka centrów danych z przeznaczeniem na wynajem dostępnej w serwerowniach przestrzeni fizycznych (kolokacja). Omawia, HC8, została oddana do użytku pod koniec 2010 roku, a koszt jej budowy wyniósł ponad jeden milion Euro. Niniejszy dokument w skrócie przedstawia wdrożone rozwiązania, skupiając się przede wszystkim na opisaniu rzędowej organizacji szaf serwerowych oraz klimatyzacji i zabudowie powstałego w ten sposób zimnego korytarza.

Wewnątrz zabudowanego, chłodnego korytarza.
Wewnątrz zabudowanego, chłodnego korytarza.

Nowa hala centrum danych o powierzchni ponad 200 m2, wyposażona została w 64 szafy produkcji firmy Conteg o wysokości 42U, szerokości 600 mm oraz głębokości 1000 mm. W celu dopasowania się do wymagań jak największej grupy klientów, zainstalowano 40 pełnowymiarowych szaf rackowych, 12 szaf dzielonych na pół oraz kolejne 12 z czterema wydzielonymi sekcjami, dzięki czemu uzyskano 112 indywidualnych miejsc kolokacyjnych dla różnych grup klientów.

Każda z sekcji posiada osobne drzwi przednie oraz tylne, które mogą być otwarte jedynie przez konkretnego klienta. Również przyłącza teleinformatyczne oraz elektryczne są doprowadzone indywidualnie do każdej z „półek” szafy, co znacznie podwyższa bezpieczeństwo i niezawodność danego rozwiązania. Wszystkie drzwi posiadają perforację zajmującą aż 83% ich powierzchni, dzięki czemu urządzenia umieszczone w szafach mogą zaciągać i wypuszczać swobodnie duże ilości powietrza. Każda z sekcji wyposażona jest dodatkowo w panele maskujące oraz ramę separującą, które zapobiegają mieszaniu się chłodnego i ciepłego powietrza w szafie.

Widok zewnętrzny zabudowanego, chłodnego korytarza.
Widok zewnętrzny zabudowanego, chłodnego korytarza.

W celu zapewnienia możliwie najlepszych warunków środowiskowych dla utrzymywanego w szafach sprzętu IT, zastosowano zabudowę zimnego korytarza, zapobiegającą mieszaniu się chłodnego i gorącego powietrza. Rozwiązanie to pozwoliło na znacznie efektywniejsze wykorzystanie urządzeń klimatyzacyjnych i generowanego przez nie chłodu (schłodzone powietrze zamiast rozchodzić się po całym pomieszczeniu pozostaje w przestrzeni ograniczonej szafami, podłogą techniczną oraz sufitem zabudowy korytarza do wysokości 2,3 m, obniżenie kosztów oraz umożliwienie osiągnięcia niższej wartości współczynnika PUE (ang. Power Usage Effectiveness).  Optymalne wykorzystanie klimatyzacji ma tutaj bardzo duże znaczenie, ponieważ zakładana moc elektryczna serwerowni została zaprojektowana na 300 kW, z czego obciążenie każdej z szaf oszacowane zostało na 4 kW.

Biorąc pod uwagę ilość szaf, ich podział na sekcje oraz możliwość montażu urządzeń IT o wysokiej gęstości mocy, zastosowano klimatyzatory rzędowe (ang. Side Mount (In-Row) Cooling Units) firmy Conteg z wymiennikiem ciepła w postaci wody lodowej (podłączenie do istniejącej instalacji).

Widok na dzielone szafy serwerowe.
Widok na dzielone szafy serwerowe.

Ilość klimatyzatorów oraz ich moc dobrano zgodnie z warunkiem N+1 dla każdego z bloków korytarza. W pierwszym bloku zawierającym 40 standardowych szaf 42U zostało zainstalowanych 10 klimatyzatorów (w tym jeden redundantny), każdy o mocy 19,3 kW. Z kolei w drugim, składającym się z 24 szaf dzielonych - 8 klimatyzatorów (również z jednym redundantnym) o takiej samej mocy. Urządzenia posiadają
5 wentylatorów, których prędkość regulowana jest automatycznie w zależności od warunków środowiskowych od 0 do 100%. Obudowa klimatyzatorów jest dopasowana do zamontowanych szaf zarówno pod kątem stylistycznym jak i gabarytowym. Urządzenia zajmują jedynie 300 mm przestrzeni pomiędzy szafami (w porównaniu do 600 mm w standardowych rozwiązaniach innych producentów), dzięki czemu zaoszczędzone miejsce można było przeznaczyć na montaż większej ilości szaf.

Ilość zajmowanego miejsca została również zredukowana dzięki zastosowaniu specjalnych ram montażowych o szerokości 300 mm, zamiast standardowych szaf krosowniczych. Ramy te montowane są na końcach korytarza i pozwalają na organizację dużej ilość kabli teleinformatycznych oraz montaż urządzeń sieciowych w pozycji pionowej.

Zabudowa strefy chłodu pomiędzy szafami z zasilaczami UPS
Zabudowa strefy chłodu pomiędzy szafami z zasilaczami UPS

Trzeci blok zimnego korytarza przeznaczony został na cztery szafy zapełnione modularnymi UPS-ami, zasilanymi z dwóch niezależnych źródeł energii. Każdy z UPS-ów jest w stanie dostarczyć do 120 kW mocy przy jednoczesnym wydzielaniu ciepła na poziomie 7 kW. Dostarczenie schłodzonego powietrza i odbiór 28 kW (max) gorącego powietrza zapewniony jest przez 2 klimatyzatory rzędowe (600 mm) połączone ze sobą w topologii N+1, z których każdy może pracować z wydajnością do 30 kW.

Przestrzeń zabudowy korytarza monitorowana jest przez ponad 100 czujników temperatury, wilgotności oraz zalania. Całe pomieszczenie serwerowni posiada wdrożony system monitoringu warunków środowiskowych, telewizji przemysłowej CCTV oraz kontroli dostępu.

Butle systemu gaszenia mgłą wodną.
Butle systemu gaszenia mgłą wodną.

W pomieszczeniu serwerowni zamontowany został system bardzo wczesnej detekcji dymu VESDA, który pozwala na wzbudzenie sygnalizacji alarmowej nawet przy bardzo niskim zadymieniu, dzięki czemu istnieje możliwość poinformowania pracowników o wystąpieniu zarzewia pożaru jeszcze przed momentem jego wykrycia przez system SAP. Centrala ppoż, połączona jest z systemem automatycznego gaszenia (stałym urządzeniem gaśniczym). W przypadku wykrycia pożaru, przestrzeń zimnych korytarzy zostanie wypełniona środkiem gaśniczym w postaci nieprzewodzącej mgły wodnej wyzwalanej pod bardzo wysokim ciśnieniem poprzez dysze zainstalowane w suficie zabudowy.

Projekt budowy nowej serwerowni został opracowany na początku 2010 roku, jej realizacja rozpoczęła się latem i trwała 90 dni, obejmując wykonanie prac z branż: budowlanej, elektrycznej, sanitarnej, ppoż, teletechnicznej oraz teleinformatycznej.

Chłodzenie w centrach danych jest podstawą ich sprawnego funkcjonowania. Wysoka temperatura zwiększa bowiem ryzyko awarii, co wiąże się z ewentualną utratą danych. Obecnie rozwój branży IT jest nierozerwalnie związany z coraz większym wykorzystaniem energii elektrycznej, a wpływ jaki ma na środowisko naturalne, jest jednym z najbardziej komentowanych zagadnień ostatnich lat. Proekologiczne rozwiązania stosowane w serwerowniach i centrach danych, to już nie tylko trend, ale sposób na duże oszczędności i stworzenie obiektu przyjaznego środowisku. Rosnące zużycie energii oraz wzrost jej cen powoduje, że utrzymanie centrów danych drożeje. Zapewnienie optymalnej temperatury w serwerowni ma kluczowe znaczenie dla kosztów utrzymania obiektu. Poniżej przedstawiam kilka podstawowych kroków do zmniejszenia związanych z tym kosztów.

Krok pierwszy - pomiar i analiza zużycia energii elektrycznej

Pierwszym krokiem do zminimalizowania kosztów jest pomiar i ocena zużycia energii, potrzebnej do funkcjonowania całego obiektu. Do oceny efektywności energetycznej centrum danych można posłużyć się wskaźnikiem PUE (z j. ang. Power Usage Effectiveness). Jest to iloraz mocy pobieranej przez wyposażenie zainstalowane w centrum danych, oraz moc potrzebną do funkcjonowania sprzętu IT (serwery, przełączniki, pamięci masowe i inne urządzenia). Współczynnik będzie tym bardziej korzystny, im bliższy będzie wartości 1. Metoda ta pozwala określić ile energii przypada na działanie wyposażenia, a ile na urządzenia IT. By uzyskać rzeczywiste wyniki, warto przeprowadzać to badanie przez cały rok.

Krok drugi - optymalizacja przepływu powietrza

Przykład modularnej zabudowy strefy chłodu wykonanej w istniejącej serwerowni
Przykład modularnej zabudowy strefy chłodu wykonanej w istniejącej serwerowni

Właściwy przepływ powietrza jest konieczny, by utrzymać odpowiednią temperaturę w serwerowni. Wzrastająca wydajność obliczeniowa sprzętu generuje większe ilości gorącego powietrza, które należy w sposób odpowiedni odprowadzać. Jednym z problemów jest powstawanie tzw. gorących punktów (z j. ang. host spot), czyli miejsc, w których kumuluje się duża ilość ciepła. Inną przyczyną, która istotnie wpływa na pracę centrum danych i większy pobór energii elektrycznej, jest mieszanie się gorącego powietrza z chłodnym. Często zdarza się to, kiedy w szafie rack są puste miejsca, przez które ucieka powietrze. Rozwiązaniem może być wówczas zamontowanie w szafach paneli maskujących i oddzielenie fizyczne stref chłodu i ciepła. W charakteryzacji przepływu powietrza w serwerowni (szczególnie na etapie projektowania) pomoże zastosowanie modelowania obiegu  powietrza, do którego wykorzystuje się programy komputerowe typu CFD (z j. ang. Computational Fluid Dynamics).

Krok trzeci - zwiększenie temperatury wewnątrz serwerowni

Sposobem na obniżenie kosztów związanych z eksploatacją serwerowni jest również podwyższenie temperatury w strefach zimnych pomiędzy szafami IT w serwerowni. Serwery mogą bezpiecznie pracować w temperaturze nawet 27 stopni Celcjusza, co potwierdzone jest przez specjalistyczne instytucje i producentów sprzętu.

Krok czwarty -  wykorzystanie energooszczędnego sposobu chłodzenia

Sprzyjające warunki atmosferyczne wykorzystuje się również do schłodzenia serwerowni za pomocą systemów oszczędnego chłodzenia (tzw. free cooling). Dzięki tej metodzie możemy odprowadzić ciepło bez użycia sprężarek chłodniczych, wykorzystując jedynie niską temperaturę na zewnątrz. W naszych warunkach klimatycznych sprawdza się z powodzeniem, bo free cooling może pracować nawet przez kilka miesięcy w ciągu roku. Dzięki temu znacznie wpływa na zmniejszenie poboru prądu.

Wymienione tutaj sposoby optymalizacji chłodzenia serwerowni i idącej za tym redukcji kosztów utrzymania centrum danych nie wyczerpują zagadnienia. Część z nich jest bardzo łatwa i niedroga do wykonania w już istniejącej serwerowni (zwiększenie temperatury w serwerowni, separacja stref chłodu i ciepła, zastosowanie paneli maskujących w szafach serwerowych), natomiast zastosowanie free coolingu wymaga już sporych nakładów finansowych i wykonania prac instalacyjnych.